

Measuring the Neutrino Mass Hierarchy: Reactor Neutrinos

Dan Dwyer Apr. 26, 2013

Outline

Reactor Neutrinos:

Signature of the Neutrino Mass Hierarchy

Measurement Approach

Challenges

Schedule and Prospects

Closing Statements

3-Flavor Oscillation

For reactor neutrino oscillation, vacuum expression is sufficient:

For both hierarchies:

 $|\Delta_{31} - \Delta_{32}| = |\Delta_{12}| \rightarrow$ Frequency difference give no hierarchy information

But amplitudes are different:

Normal Hierarchy: $|\Delta_{31}| > |\Delta_{32}| \rightarrow Larger amplitude at higher frequency$ Inverted Hierarchy: $|\Delta_{31}| < |\Delta_{32}| \rightarrow Larger amplitude at lower frequency$

Proposed Experiments

??? (a.k.a. Daya Bay II) is the only planned reactor hierarchy experiment.

Daya Bay II

'Super - KamLAND':

- 20 kT liquid scintillator detector
- >30 m diameter

- ~15000 20" PMTs (~80% coverage) Y. Wang LBNL RPM Muon detector Steel Tank 20 kt LS Water seal 20kt water Acrylic tank: Ф34.5m 6kt MO Stainless Steel tank: Ф37.5m ~15000 20" PMTs coverage: ~80% 1500 20" VETO PMTs

Expected Signal

Example Reactor Signal:

40 GWth reactor power 20 kT detector 58 km distance 5 year exposure

→ ~100k events (with oscillation) Reactor anti-electron neutrino spectrum, weighted by inverse beta decay cross-section.

Expected Signal

For a 'perfect' detector, hierarchy signal is obvious:

Positron from inverse beta decay preserves neutrino energy: E_{e+} ≈ E_v − 0.8 MeV

Detector Resolution

High detector resolution essential to detect oscillation.

Resolution:

Current state-of-the-art: ~ 6.5% / √E(MeV) Limited by photo-statistics.

This example:

 \rightarrow 3% / $\sqrt{E(MeV)}$.

Neutrino Mass Hierarchy: Reactor Neutrinos

A Diminished Signal

Uncertainty in Δm^2_{MINOS} diminishes sensitivity above ~3 MeV.

Each bin provides little sensitivity → Fourier analysis methods.

Example 'Experiment' and Fit

Normal and Inverted best fits look almost identical by eye.

Resolution washes out high-frequency oscillation at low energies.

Discrepancy most obvious ~2-3 MeV.

Additional Concerns

Detector calibration and modeling essential for measurement.

Current state-of-the-art allows ~few percent

variation in positron calibration.

Consider a linear energy shift.

 $\alpha = 0$

'Tuning' the Non-linearity

Pathological non-linearity can cause signal to 'vanish'.

Daya Bay II: Sensitivity

Sensitivity calculation from Daya Bay II: arXiv:1303.6733

Assume 5 years data, 3% detector resolution.

Includes actual reactor positions, calibration uncertainty.

1.0% $\Delta m^2_{\mu\mu}$ uncertainty: \rightarrow 4.4 σ hierarchy

1.5% $\Delta m^2_{\mu\mu}$ uncertainty: \rightarrow 3.7 σ hierarchy

Daya Bay II Status

Schedule is aggressive:

- Already received Chinese equivalent to CD-1 approval

- Civil Construction: 2014-2017

- Detector Assembly: 2018-2019

- Operation: 5-6 years

Y. Wang LBNL RPM

Challenges

Some challenges exist for reactor hierarchy measurement:

Uncertainty in Δm²_{MINOS}:

→ MINOS+, Nova, etc. may reduce uncertainty from 4% to ~2%

Detector resolution:

- → DYB-II goals:
 - Maximize PMT coverage (~80%, ~x2.3 KamLAND)
 - Increase PMT efficiency (x2.0)
 - Increased scintillator light yield (x1.5)
 - Increase scintillator attenuation length (16m→30m, x0.9)

Detector Calibration:

→ Calibration of >30m detector to be developed

Reactor cores must be at common distance:

→ Appears that reactor cores ±0.5 km common distance sufficient

Detector structural design:

→ Design for >30m diameter vessel in planning

Summary

Reactor measurement of neutrino mass hierarchy is challenging:

- → Intrinsic signal is marginal due to:
 - Uncertainty in oscillation frequency: Δm²_{MINOS}
 - Limited statistics (even for a large 20 kT detector)
- → Technological progress needed to detect 'realistic' signal
 - Improved Scintillator, PMT properties needed for >3% resolution.
 - Positron calibration required to discriminate hierarchy

Improvements in Δm^2_{MINOS} uncertainty, detector technology would improve prospects.

LBNL Opportunities:

Explore sensitivity dependence on resolution, calibration, etc:

→ A detailed and comprehensive sensitivity study: Provide clearer guidance and detector requirements.

Participation in Daya Bay II:

→ International contribution likely to be limited.
One specific request is to develop calibration program.